Study ERP002560 Download

TitleTranscriptional_response_of_the_mouse_intestinal_mucosa_to_infection_by_the_parasitic_nematode_Trichuris_muris
AbstractThis data is part of a pre-publication release. For information on the proper use of pre-publication data shared by the Wellcome Trust Sanger Institute (including details of any publication moratoria), please see http://www.sanger.ac.uk/datasharing/ The human-infective whipworm Trichuris trichiura is estimated to infect up to a billion people and is responsible for considerable morbidity, especially in children of developing countries. The closely related species T. muris is a naturally occurring nematode parasite of mice that serves as a remarkably tractable model system for dissecting immune responses and host-parasite relationships. Such studies are of relevance beyond parasitology as helminths have arguably had a significant impact on the evolution of the mammalian immune system. Both Trichuris species reside in the caecum and colon of the host where they burrow their front end for feeding into the intestinal mucosa, thereby breaching the mucus barrier and allowing access of the microflora directly to the epithelium. The interplay of intestinal helminths, the bacterial microflora and the host immune system is currently a research focus in various laboratories (Bancroft et al 2012). This study will study the transcriptional responses of the intestinal mucosa (caecum) from infected and infected mice.
Referencesno content
OrganismsMus musculus
TypeTranscriptome Analysis
DescriptionThis data is part of a pre-publication release. For information on the proper use of pre-publication data shared by the Wellcome Trust Sanger Institute (including details of any publication moratoria), please see http://www.sanger.ac.uk/datasharing/ The human-infective whipworm Trichuris trichiura is estimated to infect up to a billion people and is responsible for considerable morbidity, especially in children of developing countries. The closely related species T. muris is a naturally occurring nematode parasite of mice that serves as a remarkably tractable model system for dissecting immune responses and host-parasite relationships. Such studies are of relevance beyond parasitology as helminths have arguably had a significant impact on the evolution of the mammalian immune system. Both Trichuris species reside in the caecum and colon of the host where they burrow their front end for feeding into the intestinal mucosa, thereby breaching the mucus barrier and allowing access of the microflora directly to the epithelium. The interplay of intestinal helminths, the bacterial microflora and the host immune system is currently a research focus in various laboratories (Bancroft et al 2012). This study will study the transcriptional responses of the intestinal mucosa (caecum) from infected and infected mice.
SubmitterThe Sanger Center
Related objects
SubmissionsERA211319
Linksno content